CALCULATION OF THE NONSTATIONARY
INTERACTION OF JET FLOWS WITH A
TWO-DIMENSIONAI TARGET
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and P. S. Jain

A finite-difference scheme is employed to calculate the flow field in the region of inter-
action of nonuniform jet-type flows with a flat target at normal incidence. Results ob-
tained in the numerical solution are presented.

In recent years a number of papers have appeared in which finite-difference methods are used to
solve practical problems of gasdynamics for an ideal gas. In [1, 3] studies were made of the gas flow in
the gas line of a reaction-type motor and of the outflow of a supersonic jet from a nozzle; in [4, 5] stud-
ies were made of the behavior of the gas in a shock layer arising from the impingement of a uniform super-
sonic flow onto a blunt body. In the present paper we apply a finite-difference method to calculate the

flow field in the region of interaction of a nonuniform subsonic jet-type flow with an infinitely large flat
target, The flow is assumed to be two-dimensional,

We consider the nonstationary interaction of the nonuniform flow of an ideal incompressible liquid
flowing out of an aperture of finite width D and impinging onto an infinitely large flat target, placed nor-
mal to the flow at a distance X (Fig. 1). We infroduce a distance x, =Y, where the influence of the target
on the flow can be considered to be negligibly small. The outward flow (x, = Y) is set into motion impul-
sively at the instant of time t = 0 with a speed U, = U,(x;) which varies in the transverse direction (x;) and

.is independent of the time. In the coordinate system x,0x, the funda-

mental dimensionless equations describing the flow may be written as
follows:

ou,
A 0x,
dv; n O(w,) _ 0P
ot ox, ox.
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In Egs. (1) and (2) all the linear dimensions are referred to the
aperture width D; the speed is referred to the magnitude of the outward

flow speed U, on the line of symmetry (x; = 0); the pressure is referred
to pUZ and the time is referred to the ratio D /U,.

. The divergence operation in Eq. (2), combined with the con-
N [ 137~ tinuity equation (1), yields Poisson's equation; the latter is then used
\E _,U’ to calculate the pressure at each instant of time for known values of
I v the speed:
|
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Fig. 1. Physical model and

The system of Egs. (2) and (3) is integrated in the region F[~Dg /2 = x,
- system of coordinates.

=De/2, ~Y =%, =Y, t = 0], where D, is the width of the jet flow
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at the distance x, =Y from the target. The initial and boundary conditions for the problem considered
are of the form

t<0; vy =0,=0, P = Py, = const 4)
for all (xy, x,) € F;
t>0, Uy = Uy, Uy = Uwzv Uav = le—l': + Uwzﬁ (5)
P =P, 0P/, =0, x,= +Y;
v, =0, x,=0; (6)
v,=0, P=P~P,, op =0, Xl——_i_"D_niy
: 0x, 2
0, (De/2) = v, (— D f2). ™

The condition (5) is characteristic of nonuniform free jet-type flows in which the pressure gradient
across the jet is negligibly small; condition (6) follows from the nonpenetrability of the target; the
condition (7) is based on the assumption that the flow at the distances x; = + D, /2 is symmetric rela-
tive to x; =0 and is completely reconstituted in a direction along the surface of the target, The latter
is characteristic for a jet adjacent to a wall.

For the difference approximation of the differential equations (2) and (3) we introduce steps At,
Axy, AXx, in the difference mesh along the 0t, 0x;, 0x, axes, respectively. We denote flow parameters
at the point M(1 j) at the time instant t by A1 J»t and those at the point N (i = Ax;, j # Ax,) at the time
t+ At by AL Li#14,E+1  Henceforth we omit t from the notation, writing ALJ in place of AL ¢,
Using central dlfferences for spatial derivatives and forward differences for time derivatives, we write
the finite-difference analog of Eqgs. (2) as follows:

2Ax1Ax2 virhtl — — Axgpithi gl 4 At i Lj
At
_ _ el : 28x,Ax, ..
— Axy 0 O L Agob T o T — Ax, (P — Py TR g, (8)

At

An analogous expression can also be written for the v, component of the velocity. For Eq. (3) we
obtain

- 4(Pt+l N I“ PL—I g o Pl JHE Pz J—1 4PL',]')
1 1 Axy \2, o - Axy o N L] Yy
— (vzl-{—l.; _vi—l,/)?_ - Ail ) (Ué,.,j_l —05*'“1)2~}— 2 A)[1 (Ul,,+1 O] i (02 Li__ v I . (9)
S 2 2

The difference equations are solved in the following order.

1. At the time instant t =0 we take v; =v, =0 at all the nodes of the mesh with the exception of
theboundary x, =Y. For the case in which an approximate solution of the problem in a stationary for-
mulation is known throughout the whole region F, it is convenient to use the data of this solution to estab-
lish the acceleration.

2. For the given velocity values at time t = 0 we solve the linear system of equations for the pres-
sure at the mesh modes, obtaining it from Egq. (9) for each node of the mesh. By fixing the pressure
at the nodes x; = +D,/2, we make the system nonsingular. An iterational process is used as long as
the dlfference in the quantities P in consecutive iterations at a number of selected nodes stays larger than
10-% at all of these nodes simultaneously. To accelerate convergence of the iterational process we use
the method of overrelaxation. Egquation (9) is replaced by an equation of the form

P(n-ﬁ—l)vp(n)-]‘-k{ (PL+”+PL—]’~|—P‘ JH -+ PL ’—)-
- " Ax. N2 i iy j— Ax. AN i j— 1,7 i—1,§ ir]
- FIE [(UH—U v+ ( Axi ) R ])2 + 2]‘&“(01" g )(Uz‘ R ) ]_P(n]) }, (10)

where k is the coefficient of overrelaxation; the subscripts (n) and (n + 1) denote values for the n-th
and (n + 1)-th iterations; the subscript * denotes the next to the last correctional quantity. As the result
of numerical ‘experiments we chose the overrelaxation coefficient equal to k = 1.7.
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9/00 v If we denote the difference in the value of the pressures
Lo /"\\ in the n-th and (n—1)-th iterations of each of the mesh modes
. ,,_,_o_ T by em) = P(n)—P(n-1)’ then, for the value of k chosen, a
s t > ar Y value of the ratio [leq, o )|l lem)ll equal to 0.999 is attained
0.8 — Z t‘\ﬁ. { \‘\ at the initial instant when the number of iterations n < 200.
mJ \ )/ . — ¥ It should be noted that when values of the velocity in the
X\ \\ a—2 computational region F close to the stationary solution are
0.8 — %1 A T e— 3 used for the initial conditions at t =0 the time for the itera-
)/ ‘)\\ '\\_ b— 4 tional process is considerably shortened. When the law for
o a7 A\ \\ |°e— ¢ velocity propagation at the initial instant is well chosen, the
P \ “= 5/" number of iterations does not exceed n = 20,
/;\‘ 3. Knowing the velocity components and the pressure
mz..-—-t—f‘f > at each node point in the computational region F at the time
ét;‘ instant t = 0, we obtain the values of the velocity at an
ﬂé/‘ instant of time At seconds later by using Eq. (8) for vy and

0 0.2 04 0.6 0.8 29/000 the equation analogous to it for v,. The pressure is then
calculated from Eq. (9) using the known values of the veloc-

Fig. 2. Velocity profiles in the jet- ity at the time instant AC.

target interaction region (¢{ = 1.0) at
various times t: solid line, t =0.7; 4. The process is repeated at succeeding time in-
dashed line, t =3.0. Data points stants,

corresponding to the enumeration 1,
2, 3, 4, 5, 6 correspond to x, /Y
values of 0, 0.2, 0.4, 0.6, 0.8, 1.0,
respectively.

Establishment of the flow in time was verified by
satisfying the continuity equation. This latter equation,
written in difference form with central differences employed
for derivatives with respect to the coordinates, has theform

E = vitli —yi=li 4 giitl —ii=1 E 0, (11)

In calculating boundary nodes of the region in a coordinate direction where central differences cannot be
evaluated, we used either forward or backward differences.

. As an example of a nonuniform flow impinging on a target, we consider the flow (Fig. 1) consisting
of a central uniform flow of speed U; and width x4, and a peripheral flow of boundary-layer type for a
two-dimensional jet with zero velocity at its outer edge (x,,). The specific boundary conditions for the
flow impinging on the target (x, =Y) are of the form:

for the central flow,
Ua1 =0, Uwy=—U,=const, 0<x, <x,, (12)

for the peripheral flow of boundary layer type for a two-dimensional turbulent jet [6]
Ui = EU, [0@ (§) — @], Uwy =EUD" (), ¥y <x; <43 = Daf2, (13)

where

3 I
D () = Cyexp(—9) + (Cz cos_V2_— @ + Cysin V2 <P> eXp(QL;
D

— X

1
o=(2* °

——y— Ci=—00176; C,=0.1337;

C,— 0.6876; 1y = _20_ —0.981 733 (X —Y);

D, D
=

=~ T 204 VaE (X — Yy /3R 0.09.

In formulating the boundary conditions fortheregion—D_/2 = x; = 0, we used the condition of flow
symmetry at the boundary x, = Y relative to the line of symmetry x; = 0.

In Eq. (13) the coefficient £ characterizes the ratio of the maximum speed Uy, in the boundary
layer to the speed U, of the central flow. For the case in which Uy = U, i.e., £ =1.0, the nonuniform
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Fig, 3. Development of the velocity profile with
time at the section x; = +D, /2 for a jet with £ =1.0:
curves: a, b, and ¢ are drawn for the times t = 0.05,
0.3, and 3.0, respectively.
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Fig. 4. Profiles of tangential velocity component in the jet—target interaction region:
for the data curves 1 and 2, £=2.4268 and the time t =0.25 and 0.625, respectively;
for the data curve 3, ¢ =17.2805 and t = 0.15, For the individual graphical plots a, b, ¢,
d, e, f, g, and h the value of 2x,/D, used was 0.1, 0.2, 0.25, 0.4, 0.45, 0.5, 0.8, and
0.95, respectively.

Fig. 5. Pressure distribution along the target at various times t for a jet with ¢ = 2.4268;
Data curves 1, 2, 3, 4, 5, and 6 are fort =0.25, 0.45, 0.5, 0.55, 0.6, and 0.615, re-
spectively.

flow represents a subsonic jet impinging on the target within the limits of its inifial portion. When ¢
> 1.0, the flow, formed in accordance with our assumptions, is the analog of the flow behind a curvi-
linear shock which forms in front of a target due to the action on it of a supersonic underexpanded jet
[71.

Upon choosing the initial conditions for the subsonic jet interacting with the target within the limits
of the initial portion of the jet (£ = 1.0), we determined the initial velocity distribution by solving approxi-
mately the problem concerning impingement of the jet on the target in a stationary formulation [8]. For
an ideal gas the approximate solution reduces to the following distribution of the velocity components
along the target:

U U,
o= RO, n=— i) (14)
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where

. 1, 0y <xyy,
®rl) = [(D' (@), xp <xLxyy=Do/2.

In our calculations we used a difference mesh of dimension 40 x 10 and 40 x 5, with step size Ax,
=0.05, Ax, =0.1 and 0.2, respectively, for each of the meshes, and a time step At =0.005. We found
that a difference mesh of size 40 x 5 yields flow parameters which differ insignificantly from those ob-
tained with a mesh of twice the number of nodes. In the calculations the coefficient £ =1.0; 2.4268; and
7.2805. The quantity Y, on which the experiments with the interaction of subsonic jets (¢ =1.0) with a two-
dimensional target were based [9], was taken equal to D. We also fixed the data concerning the pressure
distribution (Py) over the target and that relating to the velocity component profiles v; and v, in the flow
interaction region F with the target. The following initial data was used in the computations; Uy =20 m
/sec; D =107 m; P, =1 atm; x = 3D,

In Fig. 2 we display calculated values of the total velocity of the flow in the subsonic jet—target inter-
action region (£ = 0.1) at the separate times t = 0.7 and t = 3.0 (corresponding to 140 and 600 time steps).
The nature of the velocity distribution over the target, for the time instants considered, stays the same
on the whole; however, quantitatively the results differ substantially. At the time t = 3.0 the flow may be
considered to be practically reconstituted in the direction along the target; the velocity profile at the exit
sections x; = =D, /2 of the interaction region calls to mind the velocity profile in an ideal jet close to
a wall (Fig. 3); the magnitude of the velocity gradient in a neighborhood of the deceleration point (x, = 0)
is approximately equal to U,/D, which agrees with the data given in a number of experimental papers
dealing with the study of the interaction of subsonic jets with flat targets placed normal to their flow.

The error in satisfying the continuity Eq. (11) att =3.0 is equal to E ~ 0.1. Hence the time instant { = 3,0
was taken as the final one, It should be noted that the number of iterations made in calculating the pres-
sure in a given case appeared to be approximately constant and less than the initial number of iterations

(t = 0) up to the time t = 3.0, the increase in the number of iterations with time being insignificant.

We now consider the results obtained in calculating the interaction of a composite flow with the target
(¢> 1.0). In Fig. 4 we present profiles of the velocity component tangent to the target (¢ = 2,4268 and §
=17.2805 at the time instanfs t = 0.625 and 0.15, respectively) and we also show the evolution with time of
the flow along the target (for £ = 2.4268). The type of nonuniform external flow considered leads to the ap-
pearance of a complex vortical flow near the target with zones of reverse flow towards the target center (x,
=xX,=0). Thevortex zones for the time instants considered are not stationary but change shape as they are
displaced along the target. In Fig. 5 we present curves showing the change in the pressure P along the
target at various times for £ = 2.4268. As can be seen from the figure, the pressure distribution for times
t = 0.6 are characterized by a peripheral maximum pressure, As was noted in the experimental paper [6]
for the case of the interaction of a supersonic jet with a target, the flow close to the target, with a peri-
pheral maximum static pressure on the target, has a tendency to become unstable. With the fixed boundary
X, =Y, part of the liquid accumulates in the central region since it cannot overcome the peripheral maxi-
mum pressure, From the point of view of numerical computation, the boundary conditions at the boundary
x, =Y, which in this case are constant, are incorrectly posed. It should be assumed that increasing the
distance Y, instead of keeping it constant and equal to D as in our analysis, will lead to an increase in the
limiting time attainable in using a computational mesh, A decrease in the ratio (£ of the value of the maxi-
mum speed Uy, at the periphery to the speed U in the central region has the same effect; when { = 2.4268,
the final computational time t = 0.625, whereas when £ = 7.2805, t = 0.15. A time shift, even one with At
=(,025, leads to a loss in computational stability for the computational mesh used.

The calculations were made on a Minsk-2 computer in the Bombay Technological Institute and
partly, using 4 standard program on the CGD-3600, at the Bombay Institute of Fundamental Research
(India).

NOTATION
X,0X,y is the coordinate system;
F ‘ is the region of jet and wall interaction;
D . is the slit dimension;
X is the distance from slit cut-off to wall;
Y (Deo) is the dimension of interaction region along normal to wall (over wall surface);
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Xy is the dimension of central region of constant velocity at the boundary x, = Y;
;;(12 = Doo /2’

is the time;
Vi Y2 are the velocity components along the axes 0x;, 0x,, respectively;
V = vyl + vy is the velocity vector;
P is the pressure;
o is the density;
Uy, Usos are the velocity components at boundary x, =Y along the axes 0x,, 0x,, respectively;
Uy is the velocity within central region at boundary x, = Y;
Um is the velocity maximum at periphery of the region of interaction;
£=Up/Up
P, Py are the ambient pressure and the pressure at the wall, respectively;
c is the jet turbulence constant;
At, Axy, AX are the difference grid pitches along axes 0t, 0x,, 0x,, respectively;
E is the error in continuity equation fulfilment.
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